

prR 592 012-3

Ersatz für /Remplace/Replaces: Teile aus R 592 012:2007

Ausgabe / Edition: Stand 01.05.2015

Entwässerungssysteme – Teil 3: biegesteife Rohre und Formstücke (prR 592 012-3:2015)

Systèmes de canalisations – partie 3: Tubes et raccords rigides (prR592 012–3:2015)

Sewerage systems – part 3: rigid pipes and fittings (prR592 012–3:2015)

Hinweis: prR 592 012-3:2015

Diese Richtlinie ist provisorisch. Sie kann vor der definitiven Inkraftsetzung noch geändert werden und ist daher nicht verbindlich. Bei Fragen wenden Sie sich bitte an Qplus.

© Qplus 2015

Anzahl Seiten / Nombre de pages: 24

Inhaltsverzeichnis

1	Vorwort	2
2	Allgemeine Anforderungen	3
3.	Funktionsspezifische Anforderungen	4
4	Beton (Beton, Stahlfaserbeton, Stahlbeton)	12
5	Faserzement	13
6	Guss	14
7	Stahl	17
9.	Prüfmatrizen	21
10	Genehmigung und Inkrafttreten	24

1 Vorwort

11 Allgemeines

Dieses Dokument wurde von Qplus in einer Fachgruppe¹ erarbeitet. Es ersetzt Teile der Ausgabe R 592 012 vom 5.5.2011.

Ziel der Überarbeitung war, die Qplus Richtlinien einheitlich zu gestalten und dem Stand der Technik anzupassen. Während der Vernehmlassung dieser revidierten Richtlinie zeigte es sich aus den spärlichen mündlichen Stellungnahmen, dass der Teil 3: biegesteife Rohre und Formstücke (R 592 012-3:2015) einer grundlegendenden Überarbeitung bedarf.

Daher soll die grundlegende Überarbeitung mit einer erweiterte Arbeitsgruppe neu gestartet werden.

Bis die überarbeitete Richtlinie in Kraft tritt, werden allfällige Typen-, Verlängerungs- und Erweiterungsprüfungen nach den bisherigen Anforderungen durchgeführt. Die vorliegende provisorische Richtlinie entspricht deshalb ab Ziffer 3 der bisherigen Richtlinie betreffend die biegesteifen Rohre.

Die Richtlinienfamilie R 592 ... gilt im Verbund mit SIA 190 *Kanalisationen*. Sie ordnet sich unter der Norm SN 592 000 *Planung und Erstellung von Anlagen für die Liegenschaftsentwässerung* ein. Die Richtlinien R 592 ... sind in der *R 592 011 Allgemein*es vollständig verzeichnet.

Die *R 592 012* mit dem Haupttitel *Entwässerungssysteme* besteht zur Zeit der Herausgabe dieser Richtlinie aus folgenden Teilen (Die aktuelle Aufzählung der Richtlinien ist auf der Qplus-Homepage zu finden):

- Teil 1: Dichtungen
- Teil 2: Rohre und Formstücke biegeweich
- Teil 3: Rohre und Formstücke biegesteif (dieses Dokument) provisorische Ausgabe
- Teil 4: Schächte

12 Zweck und Geltungsbereich

Diese Richtlinie legt konstruktive, funktionelle und werkstoffliche Anforderungen sowie Prüfverfahren für biegesteife Rohre und Formstücke fest.

Qplus zertifiziert Rohre und Formteile nachstehender Bauart

¹ Fachgruppe: Anne Marie Hänggi, Urs Hänseler

Diese Richtlinie ist anwendbar für biegesteife Rohre und Formteile folgender Bauarten:

Beton, Stahlfaserbeton und Stahlbeton	Stahl rostfrei
Faserzement erdverlegt	Stahl verzinkt
Faserzement in Gebäuden	Stahl beschichtet
Duktiler Guss	Steinzeug
Grauguss	

13 Erläuterungen zu den Tabellen «Prüfmatrizen»

Die Prüfmatrix unter Ziffer 9.1 ist unabhängig von der Bauart anzuwenden. Ergänzend dazu kommt jeweils die Bauart-spezifische Prüfmatrix zur Anwendung. In den Berichten ist diese Reihenfolge zu beachten.

Die in der Spalte «Abs» genannten Zahlen entsprechen der Kapitelnummerierung der Prüfvorschriften dieses Dokumentes.

In den Tabellen selbst werden diverse Abkürzungen verwendet, die in der nachstehenden Zusammenstellung zusammengefasst sind:

Kürzel	Absatz	Kürzel	Absatz
DG	Durchmessergruppe	RV	Rohrverbindung
DN	Diamètre Nominal (Nennweite)	VA	Verbindungsart
FS	Formstück	VT	Verbindungsteil

2 Allgemeine Anforderungen

21 Dokumentation

Die Standarddokumentation umfasst:

- Montageanleitung
- notwendige Massskizzen
- Fremdüberwachungsvertrag
- Eigenüberwachung: Der Hersteller muss Prüfpläne für die Qualitätsüberwachung bzw. –lenkung erstellen und umsetzen. Diese Massnahmen sind durch ein anerkanntes Labor gemäss R 592 010 zu beurteilen

22 Kennzeichnung

Anforderungen an die Kennzeichnung

221	Robustheit der Kenn- zeichnung	Das Rohrleitungsteil ist durch einen Aufdruck bzw. eine Prägung oder mit einem Aufkleber so zu kennzeichnen, dass nach der Lagerung, Bewitterung und Handhabung sowie der Verlegung die Lesbarkeit der Kennzeichnung über die festgelegte Dauer sichergestellt ist.
		Anmerkung: Der Hersteller ist nicht dafür verantwortlich, wenn die Kennzeichnung infolge von Tätigkeiten im Zusammenhang mit der Verlegung und dem Ge-

		brauch wie Anstreichen, Zerkratzen und Abdecken von Rohrleitungsteilen sowie infolge der Verwendung von Reinigungsmitteln usw. für Rohrleitungsteile unleserlich wird, außer wenn diese Tätigkeit mit dem Hersteller vereinbart oder von ihm festgelegt worden ist.
222	Risse	Die Kennzeichnung darf keine Risse oder andere Beschädigungen verursachen, welche die Gebrauchstauglichkeit der Rohre und Formstücke beeinträchtigen.
		Eine Einprägung der Kennzeichnung, die die Wanddicke um nicht mehr als 0,25 mm verringert, ist im Sinne dieses Abschnittes zulässig und gilt nicht als Unterschreitung der Wanddicke.
223	Lesbarkeit	Die Kennzeichnung der Rohre und Formstücke muss so deutlich sein, dass sie ohne optische Hilfsmittel lesbar ist.
224	Häufigkeit	Die Rohre sind im Abstand von höchstens 2 m, mindestens jedoch einmal je Rohr und Formteil zu kennzeichnen.
225	Umfang	Die Kennzeichnung der Rohre und Formteile muss Tabelle 1 im Anhang 1 entsprechen. Hinweis: Möglicherweise kann es notwendig sein, die CE-Kennzeichnung aufzunehmen, wenn sie gesetzlich vorgeschrieben wird.

23 Elastomere Dichtungen

Die Anforderungen an die elastomeren Dichtungen sind in der R 592 012-1 definiert. Die dort festgelegten Vorgaben sind einzuhalten.

24 Nennweiten / Duchmessergruppen

Tabelle 1: Durchmessergruppen:

Nennweite (DN)	Durchmessergruppe (DG)
40 90	Durchmessergruppe 1 (DG 1)
100 400	Durchmessergruppe 2 (DG 2)
450 1000	Durchmessergruppe 3 (DG 3)

Die Zuordnung der DN/OD nach EN 476 erfolgt sinngemäss.

Nennweiten über DN 1000: Entwässerungssysteme mit Nennweiten über DN 1000 können zertifiziert werden. Die Prüfbedingungen werden im Einzelfall durch die Qplus Geschäftsstelle festgelegt.

3 Funktionsspezifische Anforderungen

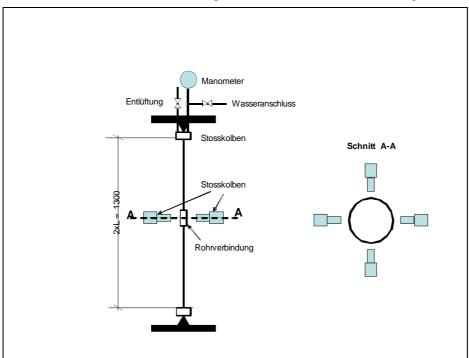
31 Dichtheit von Rohrverbindungen

Diese Prüfung dient der Sicherung der Dichtheit von Entwässerungssystemen. Sie berücksichtigt schweizerische Besonderheiten wie:

- Topologie des Geländes (Rückstauhöhe bei verstopften Leitungen)
- Geologische Gegebenheiten wie Bodeninstabilitäten, Setzungen, Erdrutsche, Gefriertiefe etc.

Diese Prüfung gilt nicht für Drainagerohre.

32 Dichtheit bei Innendruck


Diese Prüfung dient der Sicherung der Dichtheit bei Innendruck.

Es sind alle Verbindungsarten, die zum System gehören, zu prüfen. Verbindungsarten, welche vor Ort in handwerklicher Weise hergestellt werden (z. B.: Stumpfschweissung, Elektroschweissmuffen, Klebeverbindung, etc.) sind von dieser Prüfung ausgenommen.

Anforderungen: Das Prüfstück muss während des Prüfablaufs dicht bleiben.

Prüfstück: Das Prüfstück besteht aus 2 Rohrstücken, die miteinander verbunden sind.

Prüfeinrichtung: Die Rohrstücke sind in der vertikalen Prüfeinrichtung so zu befestigen, dass die freie Länge auf 1300 mm begrenzt bleibt. Das freie Pendeln an den beiden Endpunkten muss gewährleistet sein. Die Auslenkung wird durch vier um 90° versetzte Stössel mit einem Durchmesser von 30 mm erreicht. Eine drehbare Prüfeinrichtung mit einem oder zwei Stössel ist gestattet.

Figur 1: Aufbau der Prüfeinrichtung für DG1 und DG2

Prüfverfahren: Der mit Wasser gefüllte und unter Druck stehende Prüfling wird durch eine langsame Bewegung (Vorschubgeschwindigkeit maximal 50 mm/s) soweit in eine Richtung ausgelenkt, bis die Auslenkung von der geraden Achse 23 mm beträgt (= tg 2° x 650 mm) und in dieser Endstellung 15 Minuten lang gehalten. Dabei darf die maximale aufgebrachte Kraft 700 N nicht übersteigen, dies unabhängig davon, ob die Auslenkung von 23 mm erreicht wird. Anschliessend wird das Rohrleitungssystem über die Nulllage in Gegenrichtung um 23 mm ausgelenkt und in dieser Stellung 15 Minuten lang gehalten. Zum Schluss wird das Rohrleitungssystem in Nulllage zurückgelenkt und in dieser Lage 15 Minuten lang gehalten. Das Rohrleitungssystem wird dann dreimal um je 90° gedreht und das beschriebene Prüfprozedere wird jeweils in jeder dieser drei Lagen wiederholt.

Tabelle 2: Prüfbedingungen

Vorgaben	Systeme im Gebäude (B)	Systeme im Grund (UD)
Temperatur des Mediums	15 ± 5°C	15 ± 5°C
Raumtemperatur	20 ± 5° C	20 ± 5° C
Prüfdruck	3 bar	0.5 bar
Zeit bis zum vollen Prüfdruck	1 min	1 min
Prüfzeit	15 min	15 min
Auslenkung in der Verbindung	23 mm	2° oder bis Auslenkungsgren- ze
Anzahl Auslenkungen	vier um 90° versetzte Richtungen	nur in 1 Richtung

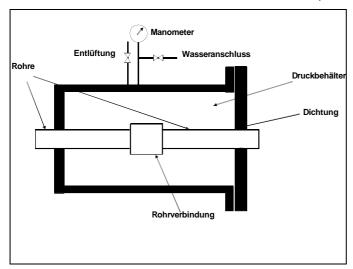
Für Beton-, Stahlfaserbeton- und Stahlbetonrohre gilt das Verfahren der SN EN 1916 mit einem Prüfdruck von 0,5 bar.

Prüfverfahren für Durchmessergruppe 3 und grösser

Ab Durchmessergruppe 3 ist das Verfahren mit Qplus abzusprechen.

33 Dichtheit bei Aussendruck (Wurzelfestigkeit)

Diese Prüfung dient der Sicherung der Dichtheit bei Aussendruck.


Es sind alle Verbindungsarten, die zum System gehören, zu prüfen. Verbindungsarten, welche vor Ort in handwerklicher Weise hergestellt werden (z. B.: Stumpfschweissung, Klebeverbindung, Elektroschweissmuffen etc.) sind von dieser Prüfung ausgenommen.

Anforderungen

Anforderungen: Prüfverfahren 1: Das Prüfstück muss während des Prüfablaufs dicht bleiben.

Prüfverfahren 2: Bei einer Prüftemperatur von $20^{\circ} \pm 3^{\circ}$ C darf während der Prüfdauer von 1 Minute kein Druckanstieg eintreten.

Prüfstück: Das Prüfstück besteht aus 2 Rohrstücken, die miteinander verbunden sind.

Figur 2: Aufbau der Prüfeinrichtung

Prüfeinrichtung: Zwei Rohre mit einer Rohrverbindung werden nach Figur 2 in einem Druckbehälter so angeordnet, dass der Innenraum der Rohre beobachtet werden kann.

Prüfverfahren 1: Hydrostatischer Aussendruck

Der Druckbehälter wird mit Wasser gefüllt, der Wasserdruck in einem Zeitraum von mindestens 1 Minute auf 0.5 bar Überdruck gebracht und dann 15 Minuten lang aufrechterhalten.

Prüfverfahren 2: Vakuumtest mit Luft

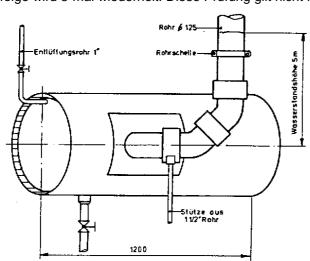
Anstelle der Prüfung nach Prüfverfahren 1 kann die Prüfung mit Vakuum in Anlehnung an EN 1277 durchgeführt werden. Das Vakuum von -0.5 bar wird aufgebracht und dann 15 Minuten lang aufrechterhalten. Der Druckanstieg darf dabei 0.1 bar nicht übersteigen.

Prüfverfahren für Durchmessergruppe 3 und grösser: Ab Durchmessergruppe 3 ist das Verfahren mit Qplus abzusprechen.

34 Dichtheit von Hauptkanalanschlüssen

Diese Prüfung dient der Sicherung der Dichtheit bei Innendruck.

Anforderungen


Anforderungen: Das Prüfstück muss während des Prüfablaufs dicht bleiben.

Prüfstück: Das Prüfstück besteht aus einem Hauptkanalrohr und einem Hauptkanalanschluss. Die Nennweite des Hauptkanalrohrs und die Nennweite des Hauptkanalanschlusses sind frei wählbar.

Prüfeinrichtung: Der zu prüfende Hauptkanalanschluss wird auf ein Rohrstück eines Hauptkanals montiert (Fig. 3). Dabei ist die Montageanleitung des Herstellers zu beachten.

Der Hauptkanal und der Hauptkanalanschluss werden auf geeignete Weise wasserdicht verschlossen. Eine Entlüftung und eine Entleerung des Systems werden an geeigneter Stelle angebracht.

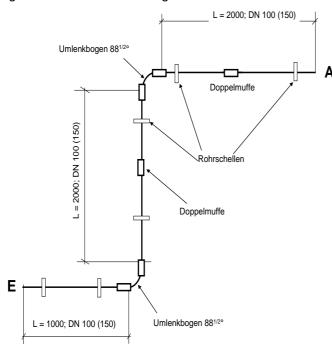
Prüfverfahren: Das zu prüfende Rohrleitungssystem (Hauptkanal und Hauptkanalanschluss) wird mit Wasser von $15^{\circ} \pm 5^{\circ}$ C gefüllt und das System wird mit einem Innendruck von 0,5 bar beaufschlagt. Dieser Druck wird 15 Minuten lang aufrechterhalten. Anschliessend wird der Druck abgelassen. Diese Abfolge wird 3-mal wiederholt. Diese Prüfung gilt nicht für Betonrohre mit Zulauf.

Figur 3: Aufbau der Prüfeinrichtung

35 Widerstandsfähigkeit gegen Rohrreinigungsgeräte

Diese Prüfung dient zur Sicherung der Dichtheit von Entwässerungssystemen nach regelmässiger Rohrreinigung. Sie dient ferner zur Sicherung der werkstofflichen Qualitäten von Entwässerungssystemen, und deren allfälligen Innenbeschichtungen bzw. Glasuren.

Abwasserrohre


Anforderungen: Das Prüfstück muss während des Prüfablaufs dicht bleiben.

Die Reinigungsdüse muss die Rohrstrecke vom Punkt E (Eingang) bis Punkt A (Ausgang) im Vorschub wie beim Zurückziehen ohne Behinderung passieren.

Das Rohrleitungssystem darf durch das Spülen keine Beschädigungen der Innenfläche bzw. deren Beschichtung oder Glasur aufweisen.

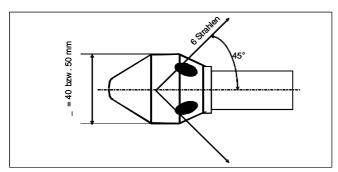
Prüfstück: Das Prüfstück besteht aus einem Rohrleitungssystem gemäss Fig. 5 (Systeme im Gebäude = DN 100, Systeme im Grund = DN 150)

Prüfeinrichtung: Das Prüfstück ist gemäss Montagevorschrift des Herstellers bzw. des Lieferanten nach Fig. 4 auf eine feste Unterlage zu montieren.

Figur 4: Aufbau der Prüfeinrichtung

Falls der Antragsteller die geforderten Minimalnennweite nicht herstellt, ist die Verwendung der kleinsten produzierten Nennweite erlaubt.

Prüfverfahren: Für die Durchführung der Prüfung werden Geräte nach dem Prinzip des Hochdruckwasserstrahlverfahrens verwendet, wobei folgende Vorgaben gelten:


Tabelle 4: Prüfbedingungen

	Systeme im Gebäude (B) 1)	Systeme im Grund (UD) 1)
Düsentyp	Rückstrahldüse mit 45° Strahlwin-	Rückstrahldüse mit 45° Strahlwinkel
	kel ohne Vorstrahl, keine scharfen	ohne Vorstrahl, keine scharfen Kanten
	Kanten (Figur 5)	(Figur 5)

Schlauch-Ø (innen)	13 ± 1 mm = (1/2")	19 ± 1 mm = (3/4")
Düsendurchmesser	40 ± 1 mm	50 ± 1 mm
Volumenstrom	120 l/min.	200 l/min.
Druck	100 bar (am Düsenausgang)	120 bar (am Düsenausgang)
Wassertemperatur	15°± 5°C	15°± 5°C
zu spülendes Rohr	DN 100	DN 150

1) B, UD gemäss Definition SN 592000

Figur 5: Prinzipskizze Rückstrahldüse

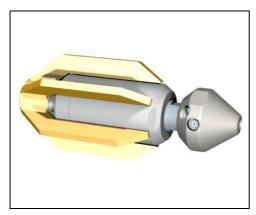
Prüfverfahren:

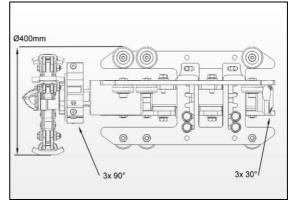
- 1 Das Rohrleitungssystem ist vor der Prüfung z.B. mittels Wasserdurchfluss auf eine Rohrwandtemperatur von 15°± 5° C zu konditionieren.
- 2 Die Düse wird beim Eingang (E) 20 bis 30 cm eingebracht.
- 3 Druck und Volumenstrom sind auf die in Tabelle 4 festgehaltenen Werte einzuregulieren. Dabei kann die Reinigungswassertemperatur im Bereich zwischen 10° und 20° C variieren.
- 4 Die Reinigungsdüse wird durch eigene Vorschubkraft zum Ausgang (A) geführt.
- 5 Hat die Düse den Ausgang (A) erreicht, wird sie unter Beibehaltung von Druck und Volumenstrom bis zum Eingang (E) zurückgezogen.
- 6 Punkt 4. und 5. werden 9 weitere Zyklen wiederholt.
- 7 Eine punktuelle Spülung wird 20 30 cm vom Eingang (E) während 3 min. unter Beibehaltung von Druck und Volumenstrom durchgeführt.
- 8 Punkt 4. und 5. werden 9 weitere Zyklen wiederholt.
- 9 Danach werden die Öffnungen (A und E) geschlossen und das Rohrleitungssystem bei 3,0 (Gebäudeentwässerung) bzw. 0.5 bar (Grundstückentwässerung) während 15 Minuten unter Druck gesetzt und auf Dichtheit untersucht.
- 10Zum Abschluss wird das System zerlegt und das Rohrinnere (an der Stelle der punktuellen Spülung in 2 Rohrschalen längs aufgeteilt) auf Beschädigungen untersucht.

Drainagerohre (Strassenbereich)

Anforderungen: Weder die Drainagelöcher bzw. –schlitzen noch das Rohrinnere dürfen durch die Einwirkung der Vibrationsrotierdüse bzw. der Kettenschleuderdüse Beschädigungen aufweisen.

Prüfstück: Das Prüfstück besteht aus einem geraden Drainagerohr von ca. 5 bis 6 m Länge (Vibrationsrotierdüse = DN 250, Kettenschleuderdüse = DN 150)


Prüfeinrichtung: Das Prüfstück ist auf einer Unterlage zu fixieren.



Für die Durchführung der Prüfung werden Geräte nach dem Prinzip des Hochdruckwasserstrahlverfahrens verwendet, wobei folgende Vorgaben gelten:

Tabelle 5: Prüfbedingungen

5 5		
	im Strassenbereich	im Strassenbereich
Düsentyp	Vibrationsrotierdüse (Fig. 10)	Kettenschleuderdüse (Fig. 11)
Schlauchdurchmesser (innen)	19 ± 1 mm = (3/4")	19 ± 1 mm = (3/4")
Düsendurchmesser	130 ± 1 mm	
Kettenlänge		zu DN 150 passend
Volumenstrom	200 l/min.	200 l/min.
Druck	120 bar (am Düsenenausgang)	120 bar (am Düsenenausgang)
Wassertemperatur	15°± 5°C	15°± 5°C
zu spülendes Rohr	DN 250	DN 150

Figur 6: Prinzipskizze Vibrationsrotierdüse

Figur 7: Prinzipskizze Kettenschleuderdüse

Prüfverfahren:

- 1 Die Vibrationsrotierdüse wird über die ganze Länge des Drainagerohrs (DN 250) durch eigene Vorschubkraft bewegt und darauf unter Beibehaltung von Druck und Volumenstrom zurückgezogen. Dieser Zyklus wird insgesamt 20-mal wiederholt.
- 2 Danach werden die Löcher bzw. Schlitze von aussen optisch beurteilt. Anschliessend wird 1 m der Rohrlänge längs in 2 Schalen aufgeteilt und das Rohrinnere auf Beschädigungen untersucht.
- 3 Die Kettenschleuderdüse wird über die ganze Länge des Drainagerohrs (DN 150) durch eigene Vorschubkraft bewegt und darauf unter Beibehaltung von Druck und Volumenstrom zurückgezogen. Dieser Zyklus wird insgesamt 5-mal wiederholt.
- 4 Danach werden die Löcher bzw. Schlitze von aussen optisch beurteilt. Anschliessend wird 1 m der Rohrlänge längs in 2 Schalen aufgeteilt und das Rohrinnere auf Beschädigungen untersucht.

36 Verhalten bei Schlagbeanspruchung

Die in der Praxis vorkommenden Schlagbeanspruchungen, welche in den meisten Fällen zu nicht offensichtlich erkennbaren Schäden an den Rohren und Formstücken führen, werden für die schlagempfindlichen Werkstoffe (Beton, Steinzeug und Faserzement) simuliert.

Diese Prüfung dient der Sicherung der Unversehrtheit von Entwässerungssystemen während des Transports, des Handlings, bei der Verlegung im Rohrgraben und unter Verkehrslasten, (zyklische Schläge oder Schwellbelastung). Sie gilt nur für die schlagempfindlichen Werkstoffe Beton, Steinzeug und Faserzement. Sie wird mittels Aufbringen einer Wechselbelastung wie folgt durchgeführt:

Anforderungen: Die Prüfstücke dürfen nicht versagen und keine durchgehenden Risse aufweisen die zu Undichtheiten führen können.

Prüfstück: Die Prüfstücke bestehen aus Rohren der Länge 1000 mm.

Prüfverfahren: Ein Rohrabschnitt ist wie auf Scheiteldruckkraft zu prüfen, jedoch muss die Last zwischen 0,1xFN und 0.4xFN mit einer Frequenz von 12 Hz schwanken. Die Schwellfestigkeitsprüfung wird mit einer zyklischen Belastung von 2x 10⁶ Zyklen durchgeführt.

FN ist abhängig der Tragfähigkeitsklasse und gemäss EN 1916 für Beton-, EN 295 für Steinzeugbzw. EN 12763 für Faserzementrohre zu berechnen.

Prüfeinrichtung: Durchführung der Prüfung: Die Schwellfestigkeit wird mit einer Prüfpresse (Druckprüfmaschine mit Wechselbelastung) nach Figur 8 an Probekörpern von 1000 mm Länge bei Raumtemperatur (22 ± 5°C) analog zur Scheiteldruckprüfung geprüft.

Figur 8: Prinzipskizze der Schwellprüfeinrichtung

Die Breite des Druckbalkens (Hartholz) beträgt 50 mm. Die Last ist über die gesamte Breite des Prüfstückes zu verteilen. Der Auflagefläche ist als V-Block aus Hartholz mit 5° Neigung auszubilden.

4 Beton (Beton, Stahlfaserbeton, Stahlbeton)

401 Lieferzustand und Aussehen

Diese Prüfung dient der Sicherung der Verarbeitungs- und Werkstoffqualität beim Herstellverfahren. Sie betrifft die Oberflächenbeschaffenheit der Dichtflächen. Diese werden gemäss folgender Norm beurteilt:

Werkstoff	Anforderung	Prüfverfahren
Beton	EN 1916	EN 1916

402 Abmessungen und Geometrie

Die Masshaltigkeit von Länge, Durchmesser, Wanddicke, Geradheit von Rohren, Rechtwinkligkeit von Rohrenden sowie von Formstücken richtet sich nach folgender Norm:

Werkstoff	Anforderung	Prüfverfahren
Beton	EN 1916	EN 1916

403 Scheiteldruckfestigkeit

Diese Prüfung dient der Sicherung der Scheiteldrucktragfähigkeit der Rohre. Sie wird mittels einer Ringbelastungsprüfung gemäss folgender Norm durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Beton	EN 1916	EN 1916

404 Längsbiegefestigkeit

Diese Prüfung dient der Sicherung der Längsbiegetragfähigkeit der Rohre DN ≤ 250. Sie wird mittels einer Vier- bzw. Drei-Punktbelastungsverfahren gemäss folgender Norm durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Beton	EN 1916	EN 1916

405 Werk- und Rohstoffe

Diese Prüfung dient der Sicherung der Werkstoffqualität und der Gebrauchstauglichkeit der Rohre. Sie wird gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Zuschlagstoffe	EN 1916	EN 1916
Anmachwasser	EN 1916	EN 1916
Zusatzmittel	EN 1916	EN 1916
Zusatzstoffe	EN 1916	EN 1916
Stahlfasern	EN 1916	EN 10002-1
Betonstahl	EN 1916	ISO 10544
Dichtungen	R 592012	R 592012
Führungsringe	EN 1916	EN 1916

406 Betoneigenschaften

Diese Prüfung dient der Sicherung der Betoneigenschaften und der Gebrauchstauglichkeit der Rohre. Sie wird gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren	
Zusammensetzung	EN 1916	EN 1916	
Güte	EN 1916	EN 1916	
Wassergehalt W/Z-Faktor	EN 1916	EN 1916	
Zementgehalt	EN 1916	EN 1916	
Chloridgehalt	EN 1916	EN 1916	
Wasseraufnahme	EN 1916	EN 1916	

5 Faserzement

501 Lieferzustand und Aussehen

Diese Prüfung dient der Sicherung der Verarbeitungs- und Werkstoffqualität beim Herstellverfahren. Sie betrifft die Oberflächenbeschaffenheit, Stirnflächen, eventuelle Beschichtungen, etc:

Werkstoff	Anforderung	Prüfverfahren
Faserzement erdverlegt	EN 12763	EN 12763
Faserzement in Gebäuden	EN 588	EN 588

502 Abmessungen und Geometrie

Die Masshaltigkeit von Länge, Durchmesser, Wanddicke, Geradheit von Rohren, Rechtwinkligkeit von Rohrenden sowie von Formstücken richtet sich nach folgenden Normen:

Werkstoff	Anforderung	Prüfverfahren
Faserzement erdverlegt	EN 12763	EN 12763
Faserzement in Gebäuden	EN 588	EN 588

503 Scheiteldruckfestigkeit

Diese Prüfung dient der Sicherung der Scheiteldrucktragfähigkeit von Faserzement-Rohren. Sie wird mittels einer Ringbelastungsprüfung gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Faserzement erdverlegt	EN 12763	EN 12763
Faserzement in Gebäuden	EN 588	EN 588

504 Biegefestigkeit

Diese Prüfung dient der Sicherung der Längsbiegefestigkeit. Sie wird mit einer 3- Punktbelastungsprüfung gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Faserzement erdverlegt	EN 12763	EN 12763
Faserzement in Gebäuden	EN 588	EN 588

505 Scherlastbeständigkeit

Diese Prüfung dient der Sicherung der Tragfähigkeit und Dichtheit unter Scherbelastung durch Erd- und Verkehrslasten im Bereich der Rohrverbindung. Sie wird mittels Aufbringen einer Last und einer Dichtheitsprüfung bei 0.5 bar gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Faserzement erdverlegt	EN 12763	EN 12763

506 Wasserdichtheit

Diese Prüfung dient der Sicherung der Wasserdichtheit von Faserzementrohr- und Formstückwand. Sie wird mittels einer Dichtheitsprüfung bei einem Innendruck von 0.25 MPa gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Faserzement erdverlegt	EN 12763	EN 12763
Faserzement in Gebäuden	EN 588	EN 588

507 Chemische Beständigkeit

Die Prüfung dient der Sicherung der Beständigkeit von Faserzement gegenüber Chemikalien. Sie wird mittels Reaktionen gegen häusliche Abwässer einerseits und gegen Essigsäureneutralisation andererseits gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Faserzement erdverlegt	EN 12763	EN 12763
Faserzement in Gebäuden	EN 588	EN 588

508 Temperaturbeständigkeit

Die Prüfung dient der Sicherung der Beständigkeit von Faserzement gegenüber erhöhter Temperatur. Sie wird mittels eines Wasserbades mit 60°C und einer Scheiteldruckprüfung gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Faserzement erdverlegt	EN 12763	EN 12763
Faserzement in Gebäuden	EN 588	EN 588

6 Guss

601 Lieferzustand und Aussehen

Diese Prüfung dient der Sicherung der Verarbeitungs- und Werkstoffqualität beim Herstellverfahren. Sie betrifft die Oberflächenbeschaffenheit, Stirnflächen, Beschichtungen, etc. Diese werden gemäss folgenden Normen beurteilt:

Werkstoff	Anforderung	Prüfverfahren
Duktiler Guss	EN 598	visuell
Grauguss	EN 877	visuell

602 Abmessungen und Geometrie

Die Masshaltigkeit von Länge, Durchmesser, Wanddicke, Geradheit von Rohren, Rechtwinkligkeit von Rohrenden sowie von Formstücken richtet sich nach folgenden Normen:

Werkstoff	Anforderung	Prüfverfahren
Duktiler Guss	EN 598	EN 598
Grauguss	EN 877	EN 877 ISO 6594

603 Zusammensetzung

Diese Prüfung dient der Sicherung der Verarbeitungs- und Werkstoffqualität beim Herstellverfahren. Sie wird mit einem Emissionsspektrometer gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Duktiler Guss	EN 545	ISO 6594

604 Härte

Diese Prüfung dient der Sicherstellung der Werkstoffzähigkeit Sie wird mittels einer Bestimmung der Brinell-Härte gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Duktiler Guss	EN 598	ISO 6505
Grauguss	EN 877	ISO 6505

605 Zugfestigkeit

Diese Prüfung dient der Sicherung der Werkstofffestigkeit. Sie wird mit einer Zugprüfung gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Duktiler Guss	EN 598	EN 598
Grauguss	EN 877	EN 877

606 Längsbiegefestigkeit

Diese Prüfung dient der Sicherung der Werkstofffestigkeit vom duktilen Guss. Sie wird mit einer Biegeprüfung gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Duktiler Guss	EN 598	EN 598

607 Ringdruckfestigkeit

Diese Prüfung dient der Sicherung der Beständigkeit gegen den Bruch der Rohre unter Erd- und Verkehrslasten. Sie wird mit einer Universalprüfmaschine gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Duktiler Guss	EN 598	EN 598
Grauguss	EN 877	EN 877

608 Abriebfestigkeit

Diese Prüfung dient der Sicherung der Beständigkeit gegen den durch Schwebe- und Feststoffe verursachten Abrieb der Rohrbeschichtung bzw. -auskleidung. Sie wird mittels einer Rohrwippe, und einem Sand-Kies-Wasser-Gemisch nur für erdverlegte Rohre gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Duktiler Guss	EN 598	EN 598

609 Korrosionsbeständigkeit des Substrates

Diese Prüfung dient der Sicherung der Korrosionsbeständigkeit des beschichteten Gussmaterials. Die Korrosionsbeständigkeit wird visuell gemäss folgenden Normen beurteilt:

Werkstoff	Anforderung	Prüfverfahren
Duktiler Guss	R 592013	R 592013
Grauguss	R 592013	R 592013

610 Chemische Beständigkeit der Beschichtung

Diese Prüfung dient der Sicherung der chemischen Beständigkeit der Beschichtung. Sie wird visuell gemäss folgenden Normen beurteilt:

Werkstoff	Anforderung	Prüfverfahren
Duktiler Guss	EN 598	EN 598
Grauguss	EN 877	EN 877

611 Wärmebeständigkeit der Beschichtung

Diese Prüfung dient der Sicherung der Wärmebeständigkeit der Beschichtung. Sie wird über die Ermittlung der Haftung der Beschichtung am Substrat nach einer Temperaturbeanspruchung gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Duktiler Guss	ISO 4624	ISO 4624
Grauguss	ISO 4624	ISO 4624

612 Korrosionsbeständigkeit der Bride (Verbinder)

Diese Prüfung dient der Sicherung der Qualität von Stahlbriden für Gussrohre. Sie wird analog zu rostfreien Stahlrohren folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Stahl rostfrei	EN 1124	R 592013

7 Stahl

701 Lieferzustand und Aussehen

Diese Prüfung dient der Sicherung der Verarbeitungs- und Werkstoffqualität beim Herstellverfahren. Sie betrifft die Oberflächenbeschaffenheit, Stirnflächen, Schweissnähte, eventuelle Beschichtungen, etc. Diese werden visuell gemäss folgenden Normen beurteilt:

Werkstoff	Anforderung	Prüfverfahren
Stahl rostfrei	EN 1124	EN 1124, ISO 559
Stahl verzinkt	EN 1123	EN 1123, ISO 559

702 Abmessungen und Geometrie

Die Masshaltigkeit von Länge, Durchmesser, Wanddicke, Geradheit von Rohren, Rechtwinkligkeit von Rohrenden sowie von Formstücken richtet sich nach folgenden Normen:

Werkstoff	Anforderung	Prüfverfahren
Stahl rostfrei	EN 1124	EN 1124
Stahl verzinkt	EN 1123	EN 1123, EN 476, ISO 559

703 Zusammensetzung

Diese Prüfung dient der Sicherung der Verarbeitungs- und Werkstoffqualität beim Herstellverfahren. Sie wird mit einem Emissionsspektrometer gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Stahl rostfrei	EN 1124	ISO 683
Stahl verzinkt	EN 1123	ISO 3306

704 Zugfestigkeit und Reissdehnung

Diese Prüfung dient der Sicherung der Werkstofffestigkeit. Sie wird mit einer Zugprüfung gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Stahl rostfrei	EN 1124	EN 1124
Stahl verzinkt	EN 1123	EN 1123

705 Korrosionsbeständigkeit des Substrates

Die Prüfung dient der Sicherung der Korrosionsbeständigkeit vom Stahlmaterial. Sie wird gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Stahl rostfrei	EN 1124	R 592013
Stahl verzinkt	EN 1123	R 592013, ISO 1461

706 Chemische Beständigkeit der Beschichtung

Falls Stahlrohre mit einer Beschichtung zum Korrosionsschutz versehen sind, dient diese Prüfung der Sicherung der chemischen Beständigkeit der Beschichtung. Sie wird gemäss folgender Norm durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Stahl beschichtet	R 592013	EN 598

707 Wärmebeständigkeit der Beschichtung

Falls Stahlrohre mit einer Beschichtung als Korrosionsschutz versehen sind, dient diese Prüfung der Sicherung der Wärmebeständigkeit der Beschichtung. Sie wird über die Ermittlung der Haftung der Beschichtung nach einer Temperaturwechsel-Beanpruchung am Substrat gemäss folgender Norm durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Stahl beschichtet	ISO 4624	ISO 4624

708 Kratzfestigkeit

Diese Prüfung dient der Sicherung der Kratzfestigkeit von beschichteten Stahlwerkstoffen. Sie wird mittels einer Schlagprüfung gemäss folgenden Normen ermittelt.

Werkstoff	Anforderung	Prüfverfahren
Stahl rostfrei	R 592013	R 592013
Stahl verzinkt	R 592013	R 592013

709 Oberflächenbeschaffenheit

Diese Prüfung dient dem Auffinden von Poren und Rissen in der Beschichtung von Stahlwerkstoffen. Sie wird mittels eines elektrostatischen Besens gemäss folgenden Normen ermittelt. Bei feuerverzinkten und nichtrostenden Stählen wird die Prüfung visuell vorgenommen.

Werkstoff	Anforderung	Prüfverfahren
Stahl rostfrei	EN 1124	EN 1124
Stahl verzinkt	EN 1123	EN 1123

710 Beschaffenheit und Wasserdichtheit der Schweissnähte

Diese Prüfung dient dem Auffinden von Undichtheiten der Schweissnähte. Sie wird mittels einer Wasserdichtheitsprüfung der Rohre gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Stahl rostfrei	EN 1124	EN 1124
Stahl verzinkt	EN 1123	EN 1123

8 Steinzeug

801 Lieferzustand und Aussehen, Prüfung der Stirnflächen

Diese Prüfung dient der Sicherung der Verarbeitungs- und Werkstoffqualität beim Herstellverfahren. Sie betrifft die Oberflächenbeschaffenheit, Stirnflächen, Glasur etc. und wird visuell gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Steinzeug	EN 295	EN 295

802 Abmessungen und Geometrie

Die Masshaltigkeit von Länge, Durchmesser, Wanddicke, Geradheit von Rohren, Rechtwinkligkeit von Rohrenden sowie von Formstücken richtet sich nach folgenden Normen:

Werkstoff	Anforderung	Prüfverfahren
Steinzeug	EN 295	EN 295

803 Scheiteldruckfestigkeit

Diese Prüfung dient der Sicherung der Verarbeitungs- und Werkstoffqualität beim Herstellverfahren. Sie wird mittels Aufbringen einer Last gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Steinzeug	EN 295	EN 295

804 Biegezugfestigkeit

Diese Prüfung dient der Sicherung der Verarbeitungs- und Werkstoffqualität beim Herstellverfahren. Sie wird mittels Aufbringen einer Biegebeanspruchung gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren	
Steinzeug	EN 295	EN 295	

805 Längsbiegefestigkeit (3- und 4-Punktbelastung)

Diese Prüfung dient der Sicherung der Verarbeitungs- und Werkstoffqualität beim Herstellverfahren. Sie wird mittels Aufbringen einer 3- und 4-Punktbelastung gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Steinzeug	EN 295	EN 295

806 Festigkeit von Klebeverbindungsteile

Diese Prüfung dient der Sicherung der Verarbeitungs- und Werkstoffqualität beim Herstellverfahren. Sie wird mittels Aufbringen einer Zugbelastung gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren		
Steinzeug	EN 295	EN 295		

807 Scherlastbeständigkeit

Diese Prüfung dient der Sicherung der Tragfähigkeit und Dichtheit unter Scherbelastung durch Erd- und Verkehrslasten im Bereich der Rohrverbindung. Sie wird mittels Aufbringen einer Last und einer Dichtheitsprüfung bei 0.5 bar gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Steinzeug	EN 295	EN 295

808 Wasserdichtheit von Rohren

Diese Prüfung dient der Sicherung der Verarbeitungs- und Werkstoffqualität beim Herstellverfahren. Sie wird mittels Wasserdruck im Innern der Rohre gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Steinzeug	EN 295	EN 295

809 Chemische Beständigkeit

Diese Prüfung dient der Sicherung der chemischen Beständigkeit vom Rohrmaterial bzw. der Glasur gegen Säuren und Laugen. Sie wird mittels Schwefelsäurelösung und Natronlauge gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren
Steinzeug	EN 295	EN 295

810 PP-Kupplung

Diese Prüfung dient der Sicherung der Qualität von PP-Kupplungen für Steinzeugrohre. Sie umfasst die Prüfung von Schmelze-Fliessrate (MFR), Reissfestigkeit, Reissdehnung, Dimensionsstabilität sowie Scherweg und wird gemäss folgenden Normen durchgeführt:

Werkstoff	Anforderung	Prüfverfahren	
PP	EN 295	EN 295	

9. Prüfmatrizen

91 Funktionsspezifische Prüfungen

Abs	Prüfpunkt	Typenprüfg	Verlängerg	Fremdüberw	Eigenüberw.	Anforderg	Verfahren
21	Montageanleitung	einreichen	einreichen			R592012-3	R592012-3
21	FÜ-Vertrag	einreichen	einreichen			R592012-3	R592012-3
21	Massskizzen	einreichen	einreichen			R592012-3	R592012-3
22	Kennzeichnung	je Probe	je Probe	je Probe	Prüfplan	R592012-3	R592012-3
	Farbe	je Probe	je Probe	je Probe	Prüfplan	R592012-3	R592012-3
32	Dichtheit Innendruck	1 RV/VA/DG	1 RV/VA/DG		1 RV/DN/J	R592012-3	R592012-3
33	Dichtheit Aussendruck	1 RV/VA/DG	1 RV/VA/DG		Prüfplan	R592012-3	R592012-3
34	Hauptkanalanschluss	1 Stück			Prüfplan	R592012-3	R592012-3
36	Rohrreinigungsgeräte	1 System				R592012-3	R592012-3
37	Schwellfestigkeit	1 Rohr/DG	1 Rohr/DG		Prüfplan	R592012-3	R592012-3
	Kontrolle Eigenüberw.	gemäss R592010 Anhang D				R 592010	R 592010
	Dichtungsqualität	ge	mäss R59201	2-1	Prüfplan	R592012-1	R 592012

92 Beton (Beton, Stahlfaserbeton und Stahlbeton)

Abs	Prüfpunkt	Typenprüfg	Verlängerg	Fremdüberw	Eigenüberw.	Anforderg	Verfahren
401	Lieferzustand / Aussehen	je Probe	je Probe	je Probe	Prüfplan	EN 1916	EN 1916
402	Abmessungen und Geometrie	1 Rohr/DN 1 FS /DN	2 Rohre/DG 2 FS /DG	2 Rohre/DG 2 FS /DG	Prüfplan	EN 1916	EN 1916
403	Scheiteldruckfestigkeit	1 Rohr/DN	1 Rohr/DN	1 Rohr/DG	Prüfplan	EN 1916	EN 1916
404	Längsbiegefestigkeit	1 Rohr/DN	1 Rohr/DN	1 Rohr/DG	Prüfplan	EN 1916	EN 1916
405	Werk- und Rohstoffe	1 F	Rohr/DG, 1 FS/	DG	Prüfplan	EN 1916	EN 1916
406	Beton	R	ohr/DG, 1 FS/I	OG	Prüfplan	EN 1916	EN 1916

93 Faserzement erdverlegt

Abs	Prüfpunkt	Typenprüfg	Verlängerg	Fremdüberw	Eigenüberw.	Anforderg	Verfahren
501	Lieferzustand / Aussehen	je Probe	je Probe	je Probe	Prüfplan	EN 12763	EN 12763
502	Abmessungen und Geometrie	1 Rohr/DN 1 FS /DN	2 Rohre/DG 2 FS /DG	2 Rohre/DG 2 FS /DG	Prüfplan	EN 12763	EN 12763
503	Scheiteldruckfestigkeit	1 Rohr/DN	1 Rohr/DN	1 Rohr/DG	Prüfplan	EN 12763	EN 12763
504	Biegefestigkeit	1 Rohr/DN	1 Rohr/DN	1 Rohr/DG	Prüfplan	EN 12763	EN 12763
505	Scherlastbeständigkeit	1 Rohr/DN	1 Rohr/DN	1 Rohr/DG	Prüfplan	EN 12763	EN 12763
506	Wasserdichtheit	1 Rohr/DN	1 Rohr/DN	1 Rohr/DG	Prüfplan	EN 12763	EN 12763
507	Chemische Beständigkeit	1 Rohr/DG	1 Rohr/DG	1 Rohr/DG	Prüfplan	EN 12763	EN 12763

94 Faserzement in Gebäuden

Abs	Prüfpunkt	Typenprüfg	Verlängerg	Fremdüberw	Eigenüberw.	Anforderg	Verfahren
501	Lieferzustand / Aussehen	je Probe	je Probe	je Probe	Prüfplan	EN 588	EN 588
502	Abmessungen und Geometrie	1 Rohr/DN 1 FS /DN	2 Rohre/DG 2 FS /DG	2 Rohre/DG 2 FS /DG	Prüfplan	EN 588	EN 588
503	Scheiteldruckfestigkeit	1 Rohr/DN	1 Rohr/DN	1 Rohr/DG	Prüfplan	EN 588	EN 588

504	Biegefestigkeit	1 Rohr/DN	1 Rohr/DN	1 Rohr/DG	Prüfplan	EN 588	EN 588
505	Scherlastbeständigkeit	1 Rohr/DN	1 Rohr/DN	1 Rohr/DG	Prüfplan	EN 588	EN 588
506	Wasserdichtheit	1 Rohr/DN	1 Rohr/DN	1 Rohr/DG	Prüfplan	EN 588	EN 588
507	Chemische Beständigkeit	1 Rohr/DG	1 Rohr/DG	1 Rohr/DG	Prüfplan	EN 588	EN 588

95	Duktiler Guss						
Abs	Prüfpunkt	Typenprüfg	Verlängerg	Fremdüberw	Eigenüberw.	Anforderg	Verfahren
601	Lieferzustand / Aussehen	je Probe	je Probe	je Probe	Prüfplan	EN 598	EN 598
602	Abmessungen und Geometrie	1 Rohr/DN 1 FS /DN	2 Rohre/DG 2 FS /DG	2 Rohre/DG 2 FS /DG	Prüfplan	EN 598	EN 598
603	Zusammensetzung	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	EN 545	ISO 6594
604	Härte	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	EN 598	ISO 6505
605	Zugfestigkeit	1 Rohr/DG	1 Rohr/DG	1 Rohr/DG	Prüfplan	EN 598	EN 598
606	Längsbiegefestigkeit	1 Rohr/DN	1 Rohr/DN	1 Rohr/DG	Prüfplan	EN 598	EN 598
607	Ringdruckfestigkeit	1 Rohr/DN	1 Rohr/DG	1 Rohr/DG	Prüfplan	EN 598	EN 598
608	Abriebfestigkeit	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	EN 598	EN 598
609	Korrosionsbeständigkeit des Substrates	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	R 592013	R 592013
610	Chemische Beständigkeit der Beschichtung	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	EN 598	EN 598
611	Wärmebeständigkeit der Beschichtung	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	ISO 4624	ISO 4624
612	Bride (Verbinder)	1 Bride / DG	1 Bride / DG	1 Bride / DG	Prüfplan	EN 1124	R 592013

96 Grauguss

Abs	Prüfpunkt	Typenprüfg	Verlängerg	Fremdüberw	Eigenüberw.	Anforderg	Verfahren
601	Lieferzustand / Aussehen	je Probe	je Probe	je Probe	Prüfplan	EN 877	EN 877
602	Abmessungen und Geometrie	1 Rohr/DN 1 FS /DN	2 Rohre/DG 2 FS /DG	2 Rohre/DG 2 FS /DG	Prüfplan	EN 877	EN 877 ISO 6594
604	Härte	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	EN 877	ISO 6505
605	Zugfestigkeit	1 Rohr/DG	1 Rohr/DG	1 Rohr/DG	Prüfplan	EN 877	EN 877
607	Ringdruckfestigkeit	1 Rohr/DN	1 Rohr/DG	1 Rohr/DG	Prüfplan	EN 877	EN 877
609	Korrosionsbeständigkeit des Substrates	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	R 592013	R 592013
610	Chemische Beständigkeit der Beschichtung	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	EN 877	EN 877
611	Wärmebeständigkeit der Beschichtung	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	ISO 4624	ISO 4624
612	Bride (Verbinder)	1 Bride / DG	1 Bride / DG	1 Bride / DG	Prüfplan	EN 1124	R 592013

97	Stahl rostfrei						
Abs	Prüfpunkt	Typenprüfg	Verlängerg	Fremdüberw	Eigenüberw.	Anforderg	Verfahren
701	Lieferzustand / Aussehen	je Probe	je Probe	je Probe	Prüfplan	EN 1124	EN 1124
702	Abmessungen und Geometrie (Rohre: pro SN)	1 Rohr/DN 1 FS /DN	2 Rohre/DG 2 FS /DG	2 Rohre/DG 2 FS /DG	Prüfplan	EN 1124	EN 1124
703	Zusammensetzung	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	EN 1124	ISO 683
704	Zugfestigkeit und Reiss- dehnung	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	EN 1124	EN 1124
705	Korrosionsbeständigkeit des Substrates	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	EN 1124	R 592013
709	Oberflächen	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	EN 1124	EN 1124
710	Schweissnähte	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	EN 1124	EN 1124
98	Stahl verzinkt						
Abs	Prüfpunkt	Typenprüfg	Verlängerg	Fremdüberw	Eigenüberw.	Anforderg	Verfahren
701	Lieferzustand / Aussehen		je Probe	je Probe	Prüfplan	EN 1123	EN 1123 ISO 559
702	Abmessungen und Geometrie (Rohre: pro SN)	1 Rohr/DN 1 FS /DN	2 Rohre/DG 2 FS /DG	2 Rohre/DG 2 FS /DG	Prüfplan	EN 1123	EN 1123
703	Zusammensetzung	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	EN 1123	ISO 3306
704	Zugfestigkeit und Reis- sdehnung	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	EN 1123	EN 1123
705	Korrosionsbeständigkeit des Substrates	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	EN 1123	R 592013
708	Kratzfestigkeit	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	R 592013	R 592013
709	Oberflächen	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	EN 1123	EN 1123
710	Schweissnähte	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	EN 1123	EN 1123
99	Stahl beschichtet						
Abs	Prüfpunkt	Typenprüfg	Verlängerg	Fremdüberw	Eigenüberw.	Anforderg	Verfahren
701	Lieferzustand / Aussehen	je Probe	je Probe	je Probe	Prüfplan	EN 1123	EN 1123
702	Abmessungen und Geometrie (Rohre: pro SN)	1 Rohr/DN 1 FS /DN	2 Rohre/DG 2 FS /DG	2 Rohre/DG 2 FS /DG	Prüfplan	EN 1123	EN 1123
703	Zusammensetzung	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	EN 1123	ISO 3306
704	Zugfestigkeit und Reis- sdehnung	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	EN 1123	EN 1123
705	Korrosionsbeständigkeit des Substrates	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	EN 1123	R 592013
706	Chemische Beständigkeit	1 Rohr/DG	1 Rohr/DG	1 Rohr/DG	Prüfplan	R 592013	EN 598

	der Beschichtung	1 FS/DG	1 FS/DG	1 FS/DG			
707	Wärmebeständigkeit der Beschichtung	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	ISO 4624	ISO 4624
708	Kratzfestigkeit	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	R 592013	R 592013
709	Oberflächen	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	1 Rohr/DG 1 FS/DG	Prüfplan	EN 1123	EN 1123
710	Schweissnähte	1 Rohr, 1 FS/DG	1 Rohr, 1 FS/DG	1 Rohr, 1 FS/DG	Prüfplan	EN 1123	EN 1123

910 Steinze	ug
-------------	----

Abs	Prüfpunkt	Typenprüfg	Verlängerg	Fremdüberw	Eigenüberw.	Anforderg	Verfahren
801	Lieferzustand / Aussehen	je Probe	je Probe	je Probe	Prüfplan	EN 295	EN 295
802	Abmessungen und Geometrie (Rohre: pro SN)	1 Rohr/DN 1 FS /DN	2 Rohre/DG 2 FS /DG	2 Rohre/DG 2 FS /DG	Prüfplan	EN 295	EN 295
803	Scheiteldruckfestigkeit	1 Rohr/DN	2 Rohre/DG	2 Rohre/DG	Prüfplan	EN 295	EN 295
804	Biegezugfestigkeit	1 Rohr/DN	2 Rohre/DG	2 Rohre/DG	Prüfplan	EN 295	EN 295
805	Längsbiegefestigkeit	1 Rohr/DN	2 Rohre/DG	2 Rohre/DG	Prüfplan	EN 295	EN 295
806	Klebeverbindungen	3 k	Klebeverbindun	igen	Prüfplan	EN 295	EN 295
807	Scherlastbeständigkeit	2 DN/DG	2 DN/DG	1 Rohr/DG	Prüfplan	EN 295	EN 295
808	Wasserdichtheit	2 DN/DG 1 FS/DG	2 DN/DG 1 FS/DG	1 Rohr/DG	Prüfplan	EN 295	EN 295
809	Chemische Beständigkeit	2 DN/DG 1 FS/DG	1 DN/DG 1 FS/DG	1 Rohr / DG	Prüfplan	EN 295	EN 295
810	PP-Kupplung		1 Kupplung / D	G	Prüfplan	EN 295	EN 295

10 Genehmigung und Inkrafttreten

Diese Richtlinie wurde vom Vorstand genehmigt und auf den 1.5.2015 als provisorische Ausgabe in Kraft gesetzt. Sie ersetzt Teile bisheriger Richtlinien R 592 012:2007. Sie entspricht inhaltlich der bisherigen Richtlinie R592 012:2007 (Anteil biegesteife Rohrsysteme)